cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049384 a(0)=1, a(n+1) = (n+1)^a(n).

Original entry on oeis.org

1, 1, 2, 9, 262144
Offset: 0

Views

Author

Marcel Jackson (Marcel.Jackson(AT)utas.edu.au)

Keywords

Comments

An "exponential factorial".
Might also be called the "expofactorial" of n. - Walter Arrighetti (walter.arrighetti(AT)fastwebnet.it), Jan 16 2006
By Liouville's theorem, the exponential factorial constant A080219 = Sum_{n>=1} 1/a(n) is a Liouville number and therefore is transcendental. - Jonathan Sondow, Jun 17 2014

Examples

			a(4) = 4^9 = 262144.
a(5) = 5^262144 has 183231 decimal digits. - _Rick L. Shepherd_, Feb 15 2002
a(5) = ~6.2060698786608744707483205572846793 * 10^183230. - _Robert G. Wilson v_, Oct 24 2015
a(6) = 6^(5^262144) has 4.829261036048226... * 10^183230 decimal digits. - _Jack Braxton_, Feb 17 2023
		

References

  • David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
  • Underwood Dudley, "Mathematical Cranks", MAA 1992, p. 338.
  • F. Luca, D. Marques, Perfect powers in the summatory function of the power tower, J. Theor. Nombr. Bordeaux 22 (3) (2010) 703, doi:10.5802/jtnb.740

Crossrefs

Cf. A132859 (essentially the same).

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, n^a(n-1))
        end:
    seq(a(n), n=0..4);  # Alois P. Heinz, Jan 17 2024
  • Mathematica
    Expofactorial[0] := 1; Expofactorial[n_Integer] := n^Expofactorial[n - 1]; Table[Expofactorial[n], {n, 0, 4}] (* Walter Arrighetti, Jan 24 2006 *)
    nxt[{n_,a_}]:={n+1,(n+2)^a}; Transpose[NestList[nxt,{0,1},4]][[2]] (* Harvey P. Dale, May 26 2013 *)
  • PARI
    a(n)=if(n>1,n^a(n-1),1) \\ Charles R Greathouse IV, Sep 13 2013

A167155 Exponential primorial constant Sum_{k>=0} 1/A140319(k).

Original entry on oeis.org

1, 6, 1, 1, 1, 1, 1, 6, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

M. F. Hasler, Nov 03 2009

Keywords

Comments

This is a Liouville number and therefore transcendental.

Examples

			1 + 1/2^1 + 1/3^2 + 1/5^9 + 1/7^(5^9)+ ... = 1.6111116231111111111111111111111111111111...
Since 1/9 = 0.11111... and 1/5^9 = 512*10^(-9), the initial 10 digits are 1.611111623.
Since 1/A140319(4) = 1/7^1953125 = 7.7731519...*10^(-1650583), these digits are followed by a string of 1650573 "1"s, then followed by digits 8884263011....
		

Crossrefs

Cf. A080219.

Programs

  • Mathematica
    Clear[ep, s]; ep[0] = 1; ep[n_] := Prime[n]^ep[n-1]; s[n_] := s[n] = RealDigits[Sum[1/ep[k], {k, 0, n}], 10, 105] // First; s[n=1]; While[s[n] != s[n-1], n++]; s[n] (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    1+1/2+1/3^2+1/5^9+1/7^5^9. /* The final dot is part of the code! */
Showing 1-2 of 2 results.