A172489
a(0)=1, a(1)=6; for n>=2, a(n) = 6^A042950(n-2).
Original entry on oeis.org
1, 6, 36, 216, 46656, 2176782336, 4738381338321616896, 22452257707354557240087211123792674816, 504103876157462118901767181449118688686067677834070116931382690099920633856
Offset: 0
A173260
a(0)=1, a(1)=5; for n>=2, a(n) = 5^A042950(n-2).
Original entry on oeis.org
1, 5, 25, 125, 15625, 244140625, 59604644775390625, 3552713678800500929355621337890625, 12621774483536188886587657044524579674771302961744368076324462890625
Offset: 0
A175129
a(0)=1, a(1)=3; for n>=2, a(n) = 3^A042950(n-2).
Original entry on oeis.org
1, 3, 9, 27, 729, 531441, 282429536481, 79766443076872509863361, 6362685441135942358474828762538534230890216321
Offset: 0
A225160
Denominators of the sequence of fractions f(n) defined recursively by f(1) = 8/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 7, 57, 3697, 15302113, 258902783918017, 73384158961115901868286873473, 5848244449673109813614947741525727934929692392922517757697
Offset: 1
f(n) = 8, 8/7, 64/57, 4096/3697, ...
8 + 8/7 = 8 * 8/7 = 64/7; 8 + 8/7 + 64/57 = 8 * 8/7 * 64/57 = 4096/399; ...
A225167
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 8/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
Original entry on oeis.org
1, 7, 399, 1475103, 22572192792639, 5844003553148435725257076863, 428857285713570950220841681681938481172663051541516755199
Offset: 1
f(n) = 8, 8/7, 64/57, 4096/3697, ...
8 + 8/7 = 8 * 8/7 = 64/7; 8 + 8/7 + 64/57 = 8 * 8/7 * 64/57 = 4096/399; ...
s(n) = 1/b(n) = 8, 64/7, 4096/399, ...
Showing 1-5 of 5 results.
Comments