A167221 a(n) is the smallest positive number B that yields a solution for k = A167219(n).
3, 5, 3, 10, 21, 9, 17, 44, 91, 7, 70, 5, 186, 71, 3, 377, 97, 285, 760, 194, 323, 1527, 574, 1148, 3062, 25, 6133, 4603, 12276, 4605, 2499, 2187, 5182, 24563, 18426, 7775, 49138, 12440, 9997, 98289, 36860, 73721, 196592, 82941, 393199, 294904, 786414, 49, 294907
Offset: 1
Keywords
Examples
For k = 21 = 2^0 * 3^1 * 5^0 * 7^1, k = B^0 * 0 + B^1 * 1 + B^2 * 0 + B^3 * 1, so we have to solve the equation 21 = B + B^3 for an integer B. No such B exists. For k = 10 = 2^1 * 3^0 * 5^1, k = B^0 * 1 + B^1 * 0 + B^2 * 1, so we have to solve the equation 10 = 1 + B^2 for an integer B. B = +-3. For k = 12 = 2^2 * 3^1, k = B^0 * 2 + B^1 * 1, so we have to solve the equation 12 = 2 + B for an integer B. B = 10. Are there any numbers other than k=12 for which B = 10 yields a solution?
Programs
-
PARI
lista(nn) = for (k=2, nn, my(f=factor(k), v=primes(primepi(vecmax(f[,1])))); my(p=sum(i=1, #v, 'x^(i-1)*valuation(k,v[i]))); p -= k; my(c=-polcoef(p, 0)); my(q=(p+c)/x); my(d=divisors(c)); for (k=1, #d, if(subst(q, x, d[k]) == c/d[k], print1(d[k], ", ")););); \\ Michel Marcus, Aug 09 2022
Extensions
Edited by Jon E. Schoenfield, Mar 16 2022
Corrected and extended by Michel Marcus, Aug 09 2022
a(41) and beyond from Michael S. Branicky, Aug 10 2022
Comments