cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167230 The matrix exponential of SierpiƄski's triangle (A047999) scaled by exp(-1).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 5, 2, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 2, 2, 1, 0, 0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 5, 2, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Gerald McGarvey, Oct 30 2009

Keywords

Comments

Conjecture: All the nonzero entries in this triangle are Bell numbers (A000110).

Examples

			Triangle begins:
1
1 1
1 0 1
2 1 1 1
1 0 0 0 1
2 1 0 0 1 1
2 0 1 0 1 0 1
5 2 2 1 2 1 1 1
1 0 0 0 0 0 0 0 1
2 1 0 0 0 0 0 0 1 1
2 0 1 0 0 0 0 0 1 0 1
5 2 2 1 0 0 0 0 2 1 1 1
2 0 0 0 1 0 0 0 1 0 0 0 1
5 2 0 0 2 1 0 0 2 1 0 0 1 1
		

Crossrefs

Programs

  • PARI
    matexp(M) = sum(k=0,99,1./k!*M^k); matexps(M) = matexp(M)/exp(1);
    matexpsb(M) = bestappr(matexps(M),9999);
    P = matpascal(13); S = matrix(14,14, n,k, P[n,k]%p);
    SS = matexpsb(S);
    for(n=1,14,for(k=1,n,print1(SS[n,k]," "));print(""))