A167415 Positive integers k such that there is no solution of the equation x^2 + y^2 + 3*x*y = 0 in Z/nZ except for the trivial one (0,0).
2, 3, 6, 7, 13, 14, 17, 21, 23, 26, 34, 37, 39, 42, 43, 46, 47, 51, 53, 67, 69, 73, 74, 78, 83, 86, 91, 94, 97, 102, 103, 106, 107, 111, 113, 119, 127, 129, 134, 137, 138, 141, 146, 157, 159, 161, 163, 166, 167, 173, 182, 193, 194, 197, 201, 206, 214, 219
Offset: 1
Examples
The only solution of the equation x^2 + y^2 + 3*x*y = 0 in Z/2Z is (0,0). 4 is not in the sequence because 0^2 + 2^2 + 3*2*0 = 4 == 0 (mod 4). 5 is not in the sequence because 1^2 + 1^2 + 3*1*1 = 5 == 0 (mod 5). 10 is not in the sequence because 2^2 + 2^2 + 3*2*2 = 20 == 0 (mod 10). - _R. J. Mathar_, Jun 16 2019
Crossrefs
Cf. A031363 (x^2 + y^2 + 3xy).
Programs
-
Maple
isA167415 := proc(n) local x,y ; for x from 0 to n-1 do for y from x to n-1 do if modp(x^2+y^2+3*x*y,n) = 0 and (x <> 0 or y <> 0) then return false; end if; end do: end do: true ; end proc: for n from 2 to 300 do if isA167415(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jun 16 2019
Extensions
Name corrected by R. J. Mathar, Jun 16 2019 and Don Reble
Comments