A167424 Define a sequence of fractions by f(1) = 1/2, f(n+1) = (f(n)^2 + 1)/2; sequence gives numerators.
0, 1, 5, 89, 24305, 1664474849, 7382162541380960705, 139566915517602820239076685726696149889, 48426946216426731755940416722216940042029155625849753533402166195474237122305
Offset: 0
Examples
0/1, 1/2, 5/8, 89/128, 24305/32768, 1664474849/2147483648, 7382162541380960705/9223372036854775808, ...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal Stopping Constants, p. 362.
Links
- Richard Blecksmith, John Brillhart, and Irving Gerst, On the mod 2 reciprocation of infinite modular-part products and the parity of certain partition functions, Mathematics of Computation 54.189 (1990): 345-376. The sequence appears in Prop. 21. - _N. J. A. Sloane_, Nov 28 2019
- Ji Chen, Inspired by IMO Shortlist 2001 algebra problem 3
- Tom Davis, Iterated Functions. See page 17.
- Ross Millikan, Strategy to maximize the expected sum of 3 numbers each drawn from ~U(0, 1), answer on MathStackExchange.
- Brian Skinner, When is a shot too good to pass up? - The shooter's sequence.
- Wikipedia, Mandelbrot-Menge. See table for c=+0,25.
Crossrefs
Denominators are (essentially) A058891.
Programs
-
Maple
f:=proc(n) option remember; if n = 1 then 1/2; else (f(n-1)^2+1)/2; fi; end;
-
Mathematica
a[1]=0; a[n_] := a[n]=(a[n - 1]^2 + 1)/2; Numerator[Table[a[n], {n, 10}]] (* José María Grau Ribas, May 19 2013 *)
-
PARI
{a(n) = if( n<2, n>0, a(n-1)^2 + 4*(a(n-1) - a(n-2)^2)^2)}; /* Michael Somos, Aug 16 2011 */
-
PARI
{a(n) = my(x=0); if( n<1, 0, for(k=1, n, x = x^2 + 1/4); numerator(x))}; /* Michael Somos, May 12 2019 */
Formula
a(n) + A076628(n+1) = 2^(2^n-1). - Shai Covo (green355(AT)netvision.net.il), Mar 17 2010
a(n+1) = a(n)^2 + 4^(2^n-1), a(0) = 0. - Henry Bottomley, Aug 21 2018
Comments