A167540 G.f.: Sum_{n>=0} A155585(2n+1)*log(1-2x)^n/n!, where (1-2*x)^2/(1-2*x+2*x^2) = Sum_{n>=0} A155585(n)*log(1-2x)^n/n!.
1, 4, 36, 432, 6504, 118272, 2525824, 62011648, 1721422656, 53324108032, 1823657963776, 68252530738176, 2774853481548288, 121780933815238656, 5738394351838543872, 288958047466769973248, 15485497781445500923904
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 36*x^2 + 432*x^3 + 6504*x^4 + 118272*x^5 +... Illustrate the g.f.: A(x) = 1 - 2*log(1-2*x) + 16*log(1-2*x)^2/2! - 272*log(1-2*x)^3/3! + 7936*log(1-2*x)^4/4! - 353792*log(1-2*x)^5/5! +...+ A155585(2n+1)*log(1-2x)^n/n! +... where: (1-2*x)^2/(1-2*x+2*x^2) = 1 + log(1-2*x) - 2*log(1-2*x)^3/3! + 16*log(1-2*x)^5/5! - 272*log(1-2*x)^7/7! +...+ A155585(n)*log(1-2x)^n/n! +...
Comments