A167572 The ED3 array read by antidiagonals.
1, 5, 1, 23, 11, 1, 167, 83, 17, 1, 1473, 741, 183, 23, 1, 16413, 8169, 2043, 323, 29, 1, 211479, 106107, 26529, 4409, 503, 35, 1, 3192975, 1592235, 398025, 66345, 8175, 723, 41, 1, 54010305, 27062325, 6765975, 1127655, 140865, 13677, 983, 47, 1
Offset: 1
Examples
The ED3 array begins with: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 5, 11, 17, 23, 29, 35, 41, 47, 53, 59 23, 83, 183, 323, 503, 723, 983, 1283, 1623, 2003 167, 741, 2043, 4409, 8175, 13677, 21251, 31233, 43959, 59765 1473, 8169, 26529, 66345, 140865, 266793, 464289, 756969, 1171905, 1739625 16413, 106107, 398025, 1127655, 2678325, 5623443, 10768737, 19194495, 32297805, 51834795
Links
- Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013.
Crossrefs
Formula
a(n,m) = ((2*m-1)!!/ (2*m-2*n-1)!!)*int(sinh(y*(2*n-1))/(cosh(y))^(2*m),y=0..infinity) for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
sum((-1)^k*binomial(n-1,k)*a(n,m-k),k=0..n-1) = 2^(n-1)*(n-1)!*(2*n-1).
Comments