A167580
A triangle related to the a(n) formulas of the rows of the ED3 array A167572.
Original entry on oeis.org
1, 6, -1, 20, 0, 3, 56, 28, 98, -15, 144, 192, 1080, -48, 105, 352, 880, 7568, 2024, 6534, -945, 832, 3328, 40976, 31616, 132444, -8112, 10395, 1920, 11200, 187488, 274480, 1593960, 286900, 972162, -135135, 4352, 34816, 761600, 1784320, 13962848
Offset: 1
Row 1: a(n) = 1.
Row 2: a(n) = 6*n - 1.
Row 3: a(n) = 20*n^2 + 0*n + 3.
Row 4: a(n) = 56*n^3 + 28*n^2 + 98*n - 15.
Row 5: a(n) = 144*n^4 + 192*n^3 + 1080*n^2 - 48*n + 105.
Row 6: a(n) = 352*n^5 + 880*n^4 + 7568*n^3 + 2024*n^2 + 6534*n - 945.
Row 7: a(n) = 832*n^6 + 3328*n^5 + 40976*n^4 + 31616*n^3 + 132444*n^2 - 8112*n + 10395.
Row 8: a(n) = 1920*n^7 + 11200*n^6 + 187488*n^5 + 274480*n^4 + 1593960*n^3 + 286900*n^2 + 972162*n - 135135.
Row 9: a(n) = 4352*n^8 + 34816*n^7 + 761600*n^6 + 1784320*n^5 + 13962848*n^4 + 7874944*n^3 + 29641200*n^2 - 2080800*n + 2027025.
Row 10: a(n) = 9728*n^9 + 102144*n^8 + 2830848*n^7 + 9645312*n^6 + 98382912*n^5 + 106720416*n^4 + 522283552*n^3 + 69265488*n^2 + 255468870*n - 34459425.
A001147 equals the first right hand triangle column.
A167576
The first column of the ED3 array A167572.
Original entry on oeis.org
1, 5, 23, 167, 1473, 16413, 211479, 3192975, 54010305, 1030249845, 21566327895, 497334999735, 12405876372225, 335591130336525, 9716331072597975, 301633179343890975, 9941514351641143425, 348336799875365041125
Offset: 1
G.f. = x + 5*x^2 + 23*x^3 + 167*x^4 + 1473*x^5 + 16413*x^6 + ...
Equals the first column of the ED3 array
A167572.
Equals the first right hand column of
A167583.
Cf.
A097801 (the 2*(-1)^n*(2*n-5)!! factor).
Cf.
A007509 and
A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor).
-
L := x -> (1+x*(Psi(1-x/2)-Psi(1/2-x/2)))/(-x)!:
a := x -> (L(x-1/2)-(x-1/2)!)*2^(x-1)*sqrt(Pi):
seq(simplify(a(n)),n=1..18); # Peter Luschny, Jul 18 2015
a := proc(n) option remember: if n=1 then 1 else (2*n-1)*a(n-1)+2*(-1)^n*doublefactorial(2*n-5) fi: end: seq(a(n),n=1..18); # Johannes W. Meijer, Jul 20 2015
-
a[ n_] := If[ n < 1, 0, (2 n - 3)!! ((-1)^n - I (4 n - 2) Sum[ I^k / k, {k, 1, 2 n - 1, 2}])]; (* Michael Somos, Jul 20 2015 *)
a[ n_] := If[ n < 1, 0, (2 n - 3)!! ((-1)^n + (4 n - 2) Sum[ KroneckerSymbol[ -4, k]/ k, {k, 2 n - 1}])]; (* Michael Somos, Jan 31 2019 *)
-
{a(n) = if( n<1, 0, prod(k=1, n-1, 2*k - 1) * ((-1)^n - (4*n - 2) * sum(k=1, n, (-1)^k / (2*k - 1))))}; /* Michael Somos, Jul 20 2015 */
A167577
The second column of the ED3 array A167572.
Original entry on oeis.org
1, 11, 83, 741, 8169, 106107, 1592235, 27062325, 514246545, 10798366635, 248374594755, 6209158112325, 167651197407225, 4861802228946075, 150717766502187675, 4973638859450709525, 174078640829054894625
Offset: 1
Equals the second column of the ED3 array
A167572.
Cf.
A007509 and
A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor).
-
Table[(1/2)*(-1)^n*(2*n - 5)!!*((4*n^2 - 6*n - 2) + (16*n^3 - 24*n^2 - 4*n + 6)*Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}]), {n, 1,50}] (* G. C. Greubel, Jun 16 2016 *)
A167578
The third column of the ED3 array A167572.
Original entry on oeis.org
1, 17, 183, 2043, 26529, 398025, 6765975, 128556675, 2699661825, 62092533825, 1552309291575, 41912411683275, 1215458905032225, 37679245697871225, 1243414695550433175, 43519523831289457875, 1610222144582102522625
Offset: 1
Equals the third column of the ED3 array
A167572.
Cf.
A007509 and
A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor).
-
Table[(1/4)*(-1)^(n)*(2*n - 7)!!*((8*n^4 - 20*n^3 - 22*n^2 + 55*n + 12) + (32*n^5 - 80*n^4 - 80*n^3 + 200*n^2 + 18*n - 45)*(Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}])), {n, 1, 50}] (* G. C. Greubel, Jun 16 2016 *)
A167574
The fourth row of the ED3 array A167572.
Original entry on oeis.org
167, 741, 2043, 4409, 8175, 13677, 21251, 31233, 43959, 59765, 78987, 101961, 129023, 160509, 196755, 238097, 284871, 337413, 396059, 461145, 533007, 611981, 698403, 792609, 894935, 1005717, 1125291, 1253993, 1392159, 1540125
Offset: 1
Equals the fourth row of the ED3 array
A167572.
-
LinearRecurrence[{4,-6,4,-1},{167, 741, 2043, 4409},100] (* G. C. Greubel, Jun 16 2016 *)
A167575
The fifth row of the ED3 array A167572.
Original entry on oeis.org
1473, 8169, 26529, 66345, 140865, 266793, 464289, 756969, 1171905, 1739625, 2494113, 3472809, 4716609, 6269865, 8180385, 10499433, 13281729, 16585449, 20472225, 25007145, 30258753, 36299049, 43203489, 51050985, 59923905
Offset: 1
Equals the fifth row of the ED3 array
A167572.
-
LinearRecurrence[{5, -10, 10, -5, 1}, {1473, 8169, 26529, 66345, 140865}, 100] (* G. C. Greubel, Jun 16 2016 *)
A167583
A triangle related to the GF(z) formulas of the rows of the ED3 array A167572.
Original entry on oeis.org
1, 1, 5, 3, 14, 23, 15, 81, 73, 167, 105, 660, 414, 804, 1473, 945, 6825, 2850, 7578, 7629, 16413, 10395, 85050, 19425, 99420, 61389, 111882, 211479, 135135, 1237005, 59535, 1642725, 429525, 1461375, 1518525, 3192975, 2027025, 20540520, -2619540
Offset: 1
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (z + 5)/(1-z)^2.
Row 3: GF(z) = (3*z^2 + 14*z + 23)/(1-z)^3.
Row 4: GF(z) = (15*z^3 + 81*z^2 + 73*z + 167)/(1-z)^4.
Row 5: GF(z) = (105*z^4 + 660*z^3 + 414*z^2 + 804*z + 1473)/(1-z)^5.
Row 6: GF(z) = (945*z^5 + 6825*z^4 + 2850*z^3 + 7578*z^2 + 7629*z + 16413)/(1-z)^6.
Row 7: GF(z) = (10395*z^6 + 85050*z^5 + 19425*z^4 + 99420*z^3 + 61389*z^2 + 111882*z + 211479)/(1-z)^7.
Row 8: GF(z) = (135135*z^7 + 1237005*z^6 + 59535*z^5 + 1642725*z^4 + 429525*z^3 + 1461375*z^2 + 1518525*z + 3192975)/(1-z)^8.
Row 9: GF(z) = (2027025*z^8 + 20540520*z^7 - 2619540*z^6 + 32228280*z^5 - 2479050*z^4 + 27797400*z^3 + 15813900*z^2 + 28153800*z + 54010305)/(1-z)^9.
Row 10: GF(z) = (34459425*z^9 + 383107725*z^8 - 115135020*z^7 + 722119860*z^6 - 283607730*z^5 + 703347750*z^4 + 89576100*z^3 + 470110500*z^2 + 495868185*z + 1030249845)/(1-z)^10.
A001147 equals the first left hand column.
A167576 equals the first right hand column.
A167579
The row sums of the ED3 array A167572 read by antidiagonals.
Original entry on oeis.org
1, 6, 35, 268, 2421, 26978, 349063, 5258520, 89121833, 1697446846, 35576664363, 819585397028, 20461925870365
Offset: 1
A167546
The ED1 array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 6, 12, 7, 1, 24, 48, 32, 10, 1, 120, 240, 160, 62, 13, 1, 720, 1440, 960, 384, 102, 16, 1, 5040, 10080, 6720, 2688, 762, 152, 19, 1, 40320, 80640, 53760, 21504, 6144, 1336, 212, 22, 1
Offset: 1
The ED1 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 4, 7, 10, 13, 16, 19, 22, 25, 28
2, 12, 32, 62, 102, 152, 212, 282, 362, 452
6, 48, 160, 384, 762, 1336, 2148, 3240, 4654, 6432
24, 240, 960, 2688, 6144, 12264, 22200, 37320, 59208, 89664
120, 1440, 6720, 21504, 55296, 122880, 245640, 452880, 783144, 1285536
- B. de Smit and H.W. Lenstra, The Mathematical Structure of Escher's Print Gallery, Notices of the AMS, Volume 50, Number 4, pp. 446-457, April 2003.
- Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013.
- A. Ryabov, P. Chvosta, Tracer dynamics in a single-file system with absorbing boundary, arXiv preprint arXiv:1402.1949 [cond-mat.stat-mech], 2014.
A000142 equals the first column of the array.
A167550 equals the a(n, n+1) diagonal of the array.
A047053 equals the a(n, n) diagonal of the array.
A167558 equals the a(n+1, n) diagonal of the array.
A167551 equals the row sums of the ED1 array read by antidiagonals.
A167552 is a triangle related to the a(n) formulas of rows of the ED1 array.
A167556 is a triangle related to the GF(z) formulas of the rows of the ED1 array.
A167557 is the lower left triangle of the ED1 array.
Cf.
A068424 (the (m-1)!/(m-n-1)! factor),
A007680 (the (2*n-1)*(n-1)! factor).
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n-1+m-1)!/(2*m-2)! od; for m from n+1 to mmax do a(n,m):= (2*n-1)*(n-1)! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n - 1 + m - 1)!/(2*m - 2)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = (2*n - 1)*(n - 1)! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
A167560
The ED2 array read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1
The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*
A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
# alternative
A167560 := proc(n,m)
option remember ;
if m > n then
n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
else
4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
end if;
end proc:
seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
Showing 1-10 of 13 results.
Comments