A167572
The ED3 array read by antidiagonals.
Original entry on oeis.org
1, 5, 1, 23, 11, 1, 167, 83, 17, 1, 1473, 741, 183, 23, 1, 16413, 8169, 2043, 323, 29, 1, 211479, 106107, 26529, 4409, 503, 35, 1, 3192975, 1592235, 398025, 66345, 8175, 723, 41, 1, 54010305, 27062325, 6765975, 1127655, 140865, 13677, 983, 47, 1
Offset: 1
The ED3 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
5, 11, 17, 23, 29, 35, 41, 47, 53, 59
23, 83, 183, 323, 503, 723, 983, 1283, 1623, 2003
167, 741, 2043, 4409, 8175, 13677, 21251, 31233, 43959, 59765
1473, 8169, 26529, 66345, 140865, 266793, 464289, 756969, 1171905, 1739625
16413, 106107, 398025, 1127655, 2678325, 5623443, 10768737, 19194495, 32297805, 51834795
- Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013.
A167579 equals the row sums of the ED3 array read by antidiagonals.
A167580 is a triangle related to the a(n) formulas of the rows of the ED3 array.
A167583 is a triangle related to the GF(z) formulas of the rows of the ED3 array.
Cf.
A014481 (the 2^(n-1)*(n-1)!*(2*n-1) factor).
A167580
A triangle related to the a(n) formulas of the rows of the ED3 array A167572.
Original entry on oeis.org
1, 6, -1, 20, 0, 3, 56, 28, 98, -15, 144, 192, 1080, -48, 105, 352, 880, 7568, 2024, 6534, -945, 832, 3328, 40976, 31616, 132444, -8112, 10395, 1920, 11200, 187488, 274480, 1593960, 286900, 972162, -135135, 4352, 34816, 761600, 1784320, 13962848
Offset: 1
Row 1: a(n) = 1.
Row 2: a(n) = 6*n - 1.
Row 3: a(n) = 20*n^2 + 0*n + 3.
Row 4: a(n) = 56*n^3 + 28*n^2 + 98*n - 15.
Row 5: a(n) = 144*n^4 + 192*n^3 + 1080*n^2 - 48*n + 105.
Row 6: a(n) = 352*n^5 + 880*n^4 + 7568*n^3 + 2024*n^2 + 6534*n - 945.
Row 7: a(n) = 832*n^6 + 3328*n^5 + 40976*n^4 + 31616*n^3 + 132444*n^2 - 8112*n + 10395.
Row 8: a(n) = 1920*n^7 + 11200*n^6 + 187488*n^5 + 274480*n^4 + 1593960*n^3 + 286900*n^2 + 972162*n - 135135.
Row 9: a(n) = 4352*n^8 + 34816*n^7 + 761600*n^6 + 1784320*n^5 + 13962848*n^4 + 7874944*n^3 + 29641200*n^2 - 2080800*n + 2027025.
Row 10: a(n) = 9728*n^9 + 102144*n^8 + 2830848*n^7 + 9645312*n^6 + 98382912*n^5 + 106720416*n^4 + 522283552*n^3 + 69265488*n^2 + 255468870*n - 34459425.
A001147 equals the first right hand triangle column.
Showing 1-2 of 2 results.
Comments