cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167606 Number of compositions of n where each pair of adjacent parts is relatively prime.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 25, 48, 90, 168, 316, 594, 1116, 2096, 3935, 7388, 13877, 26061, 48944, 91919, 172623, 324188, 608827, 1143390, 2147309, 4032677, 7573426, 14223008, 26711028, 50163722, 94208254, 176924559, 332267039, 624002605, 1171886500, 2200820905
Offset: 0

Views

Author

Keywords

Examples

			For n = 4, there are 8 compositions: [4], [3,1], [2,2], [2,1,1], [1,3], [1,2,1], [1,1,2], and [1,1,1,1]. Of these, only [2,2] has adjacent terms that are not relatively prime, so a(4) = 7.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          add(`if`(igcd(i, j)=1, b(n-j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 27 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[If[GCD[i, j]==1, b[n-j, j], 0], {j, n}]];
    a[n_] := b[n, 1];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)
  • PARI
    am(n)={local(r);r=matrix(n,n);
    for(k=1,n,
    for(i=1,k-1,r[k,i]=sum(j=1,k-i,if(gcd(i,j)==1,r[k-i,j],0)));r[k,k]=1);
    r}
    al(n)=local(m);m=am(n);vector(n,k,sum(i=1,k,m[k,i]))
    a(left,last=1)={local(r);if(left==0,return(1));
    for(k=1,left,if(gcd(k,last)==1,r+=a(left-k,k)));r}

Formula

a(n) ~ c * d^n, where d=1.8780154065731862176678940156530410192010138618103068156064519919669849911..., c=0.5795813856338135589080831265343299561832275012313700387790334792220408848... - Vaclav Kotesovec, May 01 2014