A167611 Nonprimes that are the sum of two consecutive nonprimes.
1, 10, 14, 22, 26, 34, 38, 46, 49, 51, 55, 58, 62, 65, 69, 74, 77, 82, 86, 91, 94, 99, 106, 111, 115, 118, 122, 125, 129, 134, 142, 146, 153, 155, 158, 161, 166, 169, 171, 175, 178, 183, 185, 187, 189, 194, 202, 206, 209, 214, 218, 221, 226, 231, 235, 237, 243
Offset: 1
Keywords
Examples
a(1) = 1st nonprime + 2nd nonprime = 0 + 1 = 1, which is nonprime; a(2) = 3rd nonprime + 4th nonprime = 4 + 6 = 10, which is nonprime.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Programs
-
Magma
m:=150; NonPrime:=[i: i in [0..m] | not IsPrime(i)]; [q: n in [1..#NonPrime-1] | not IsPrime(q) where q is NonPrime[n]+NonPrime[n+1]]; // Bruno Berselli, Apr 05 2014
-
Python
from sympy import isprime, composite print([1] + [totest for k in range(1,91) if not isprime(totest := composite(k) + composite(k+1))]) # Karl-Heinz Hofmann, Jan 25 2024
Extensions
Entries confirmed by R. J. Mathar, May 30 2010
Comments