A167629 The odd composites c such that c=q*g*j*y/2 and q+g=j*y where q,g,j,y are distinct primes.
105, 195, 231, 399, 627, 897, 935, 1023, 1443, 1581, 1729, 2465, 2915, 2967, 4123, 4301, 4623, 4715, 5487, 7055, 7685, 7881, 8099, 9717, 10707, 11339, 12099, 12995, 14993, 16377, 16383, 17353, 17423, 19599, 20213, 20915, 23779, 24963, 25327
Offset: 1
Keywords
Examples
a(1) = 3 * 7 * 5 = 105 (q=3, g= 7, j=2, y=5) a(2) = 13 * 3 * 5 = 195 (q=2, g=13, j=3, y=5) a(3) = 3 * 11 * 7 = 231 (q=3, g=11, j=2, y=7) a(4) = 19 * 3 * 7 = 329 (q=2, g=19, j=3, y=7) a(5) = 3 * 19 * 11 = 627 (q=3, g=19, j=2, y=11)
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Programs
-
Python
from sympy import primerange, primepi k_upto = 25327 A167629, primeset = set(), set(primelist:= list(primerange(3, int(k_upto**0.5)+1))) for x in range (primepi(k_upto**(1/3))): limit, y = k_upto // (a:=primelist[x]), x while (b:= primelist[(y:=y+1)]) * (c1:=(a * b - 2)) <= limit: if c1 in primeset : A167629.add(a * b * c1) if (c2 := b * 2 - a) in primeset : A167629.add(a * b * c2) y -= 1 while (b:= primelist[(y:=y+1)]) * (c2:=(b * 2 - a)) <= limit: if c2 in primeset : A167629.add(a * b * c2) print(A167629:=sorted(A167629)) # Karl-Heinz Hofmann, Jan 30 2025
Extensions
Corrected and extended by D. S. McNeil, Dec 10 2009