cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167635 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no peaks at odd level.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 5, 1, 14, 7, 43, 36, 143, 166, 509, 731, 1915, 3158, 7523, 13560, 30537, 58257, 127029, 251266, 538253, 1089666, 2313121, 4754148, 10051130, 20868070, 44065633, 92132176, 194617333, 408971295, 864899013, 1824485600, 3864369141
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2009

Keywords

Comments

a(n)=A167634(n,0).

Examples

			a(6)=5 because we have UUDDUUDDUUDD, UUDDUUUUDDDD, UUUUDDDDUUDD, UUUUDDUUDDDD, and UUUUUUDDDDDD.
		

Crossrefs

Programs

  • Maple
    G := ((1+2*z-z^3-sqrt(1-4*z^2-2*z^3+z^6))*1/2)/(z*(1+z-z^2)): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 38);

Formula

G.f.: G = [1 + 2z - z^3 - sqrt(1 - 4z^2 - 2z^3 + z^6)]/[2z(1 + z - z^2)].
D-finite with recurrence (n+1)*a(n) +a(n-1) +(-4*n+5)*a(n-2) +(-2*n+7)*a(n-3) +3*a(n-4) +a(n-5) +(n-6)*a(n-6)=0. - R. J. Mathar, Jul 26 2022