A167675 Least prime p such that p-2 has n divisors, or 0 if no such prime exists.
3, 5, 11, 17, 83, 47, 0, 107, 227, 569, 59051, 317, 0, 9479, 2027, 947, 0, 2207, 0, 2837, 88211, 295247, 0, 3467, 50627, 9034499, 11027, 47387, 0, 14177, 0, 15017, 1476227, 215233607, 455627, 17327, 150094635296999123, 15884240051, 89813531, 36857, 0
Offset: 1
Keywords
Crossrefs
Cf. A066814 (smallest prime p such that p-1 has n divisors)
Programs
-
Mathematica
nn=25; t=Table[0,{nn}]; Do[p=Prime[n]; k=DivisorSigma[0,p-2]; If[k<=nn && t[[k]]==0, t[[k]]=p], {n,2,10^6}]; t
Comments