cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A176029 a(n)= n^Omega(n).

Original entry on oeis.org

1, 2, 3, 16, 5, 36, 7, 512, 81, 100, 11, 1728, 13, 196, 225, 65536, 17, 5832, 19, 8000, 441, 484, 23, 331776, 625, 676, 19683, 21952, 29, 27000, 31, 33554432, 1089, 1156, 1225, 1679616, 37, 1444, 1521, 2560000, 41, 74088, 43, 85184, 91125, 2116, 47
Offset: 1

Views

Author

Michel Lagneau, Apr 06 2010, corrected Jul 07 2012

Keywords

Examples

			a(1) = 1^0 = 1 ; a(2) = 2^1 = 2 ; a(3) = 3^1 = 3 ; a(4) = 4^2 = 16 ; a(12) = 12^3 = 1728.
		

Crossrefs

Programs

  • Maple
    A176029 := proc(n)
          n^numtheory[bigomega](n) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    Array[ #^Plus @@ Last /@ FactorInteger[ # ] &, 105]
    PrimeOmega[Range[120]] (* Jul 07 2012 *)

Formula

a(n) = n^A001222(n).

A175209 Numbers n such that bigomega(bigomega(n)) ^ bigomega(n) = n.

Original entry on oeis.org

1, 16, 64, 512, 1024, 6561, 16384, 32768, 531441, 2097152, 4194304, 33554432, 67108864, 387420489, 3486784401, 8589934592, 17179869184, 34359738368, 274877906944, 549755813888, 7625597484987, 22876792454961, 70368744177664
Offset: 1

Views

Author

Michel Lagneau, Mar 05 2010

Keywords

Comments

bigomega(.) = A001222(.).
There exists an infinity of solutions n of the form n = q^p, where q is prime, bigomega(q^p)= p, and bigomega(p)= q, if we select, for example, p = 2^q.
The first solution with q=5 is n=5^32, the first solution with q=7 is n=7^128.

Examples

			With n = 16 = 2^4, bigomega(16)= 4, bigomega(4)= 2,and 2^4 = 16.
With n = 531441=3^12, bigomega(3^12)= 12, bigomega(12)= 3,and 3^12 = 531441.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 1000000000 do: if bigomega(bigomega(n))^bigomega(n)= n then print(n) : fi: od :

Extensions

Unspecific references and unrelated cross-references removed - R. J. Mathar, Mar 21 2010
Showing 1-2 of 2 results.