cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A167752 Hankel transform of A167750.

Original entry on oeis.org

1, 1, 1, 0, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1
Offset: 0

Views

Author

Paul Barry, Nov 10 2009

Keywords

Comments

The nonzero terms appear to be indexed by the quarter-squares floor((n+1)^2/4) = A002620(n+1).
abs(a(n)) = A237347(n) - 2. - Reinhard Zumkeller, Mar 18 2014

Crossrefs

Cf. A167753.

A167751 Diagonal sums of A167749.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 7, 14, 27, 52, 102, 198, 387, 755, 1474, 2879, 5622, 10982, 21450, 41900, 81847, 159880, 312315, 610086, 1191768, 2328054, 4547732, 8883767, 17354001, 33900200, 66222412, 129362318, 252703135, 493643580, 964309346
Offset: 0

Views

Author

Paul Barry, Nov 10 2009

Keywords

Comments

Hankel transform is A167753.

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 14*x^7 + 27*x^8 + 52*x^9 + ...
		

Formula

G.f.: 1/(1-x^2/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-...)))))) (continued fraction);
G.f.: 1/(1-x^2*f(x)), f(x) the g.f. of A005169.
Showing 1-2 of 2 results.