cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167766 Minimum numbers whose phi of phi are multiples of the n-th prime: the n-th term is the minimum integer x such that: prime(n) | phi(phi(x)), prime(n) being the n-th prime.

Original entry on oeis.org

5, 19, 23, 59, 47, 107, 479, 383, 283, 467, 1367, 1187, 167, 347, 1319, 643, 2837, 2203, 2153, 3413, 587, 5693, 1997, 359, 5827, 1619, 2063, 2999, 4799, 3167, 1019, 1579, 5483, 3343, 7159, 3023, 12569, 1307, 4679, 2083, 719, 3623, 4597, 3863, 18917, 4783
Offset: 1

Views

Author

Fred Schneider, Nov 11 2009

Keywords

Comments

These minimal integers are always prime. To be clear, the phi function referred to here is Euler's totient function.

Examples

			The first term is 5. phi(5) = 4 and phi(4)=2. 2 is a multiple of the first prime 2. 5 is the lowest such number x where 2 divides phi(phi(x)).
		

Crossrefs

Cf. A010554.

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,k; a:=ithprime(n);
    for k from 1 to 10^3 do if frac(phi(phi(ithprime(k)))/a)=0
    then RETURN(ithprime(k)); break; fi; od; end:
    seq(P(i),i=1..46); # Paolo P. Lava, Oct 10 2018
  • Mathematica
    a[n_] := (p=Prime[n]; k=1; While[k++; x=Prime[k]; Mod[ EulerPhi[ EulerPhi[x]], p] != 0]; x); Table[a[n], {n, 50}] (* Jean-François Alcover, Sep 14 2011 *)
  • PARI
    /* not the most efficient implementation */ ppp(a,b)= { forprime(p=a,b, v = 2*p + 1; v2 = 1; minv = 100000000; while (v2 <= minv || v <=minv, /* print ("Checking ",v, " for ",p); */ while(!isprime(v), v += 2*p /*; print ("Checking ",v, " for ",p)*/ ); if (v%(p*p)==1, /* don't do this step if: p^2 | v-1 */ v2 = v , v2 = 2*v + 1; while (!isprime(v2) && v2 < minv, v2 += 2*v ) ); if (v2 < minv, minv = v2; ); v += 2*p ); print (p," => ",minv) ) }