A167783 Numbers that are repdigits with length > 2 in more than one base.
31, 63, 255, 273, 364, 511, 546, 728, 777, 931, 1023, 1365, 1464, 2730, 3280, 3549, 3783, 3906, 4095, 4557, 6560, 7566, 7812, 8191, 9114, 9331, 9841, 10507, 11349, 11718, 13671, 14043, 14763, 15132, 15624, 16383, 18291, 18662, 18915, 19608, 19682, 21845, 22351, 22698
Offset: 1
Examples
31 is in the list because 31 = 11111_2 = 111_5; 8191 = 1111111111111_2 = 111_90; 10507 = {19 19 19}_23 = 111_102.
Links
- David Trimas, Table of n, a(n) for n = 1..8424 (first 158 terms from Michel Marcus)
- David Trimas, Wolfram Cloud Implementation of A167783
- Wolfram Demonstrations Project, Mixed Radix Number Representations
Crossrefs
Cf. A167782 (numbers that are repdigits with length > 2 in some base).
Cf. A010785 (repdigits (base 10)).
Cf. A053696 (numbers which are repunits in some base).
Cf. A158235 (numbers n whose square is a repdigit in some base < n).
Cf. A290869 (Numbers that are repdigits with length > 2 in more than two bases).
Programs
-
Mathematica
Select[Range[550], Function[n, 1 < Count[Range[2, n - 1], ?(And[Length@ DeleteCases[#, 0] == 1, Union[#][[2]] > 2] &@ DigitCount[n, #] &)]]] (* _Michael De Vlieger, Aug 09 2017 *)
-
PARI
isok(n)=my(nb = 0); for (b=2, n-1, d = digits(n, b); if ((#d > 2) && (#Set(d) == 1), nb++); if (nb > 1, return (1));); return (0); \\ Michel Marcus, Aug 08 2017
Extensions
a(41)-a(44) from Bernard Schott, Aug 08 2017
Comments