A167864 Decimal expansion of Selberg-Delange constant Product_{prime p > 2} (1 + 1/(p(p-2))).
1, 5, 1, 4, 7, 8, 0, 1, 2, 8, 1, 3, 7, 4, 9, 1, 2, 5, 7, 7, 9, 0, 9, 1, 9, 2, 5, 5, 6, 4, 9, 4, 7, 4, 8, 9, 2, 4, 1, 5, 2, 7, 0, 1, 5, 8, 2, 8, 6, 2, 1, 4, 3, 9, 5, 3, 5, 7, 4, 8, 4, 2, 7, 1, 4, 8, 4, 9, 3, 2, 2, 0, 9, 8, 1, 5, 6, 1, 1, 5, 8, 1, 0, 8, 7, 7, 5, 8, 5, 3, 8, 2, 7, 6, 9, 8, 0, 7, 6, 7, 7, 6, 5, 6, 2
Offset: 1
Examples
Product_{prime p > 2} (1 + 1/(p(p-2))) = 1.5147801281374912577909192556...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 84-93.
- Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc., Vol. 18, No. 1 (1954), pp. 83-87.
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 206.
Links
- Michel Balazard, Hubert Delange and Jean-Louis Nicolas, Sur le nombre de facteurs premiers des entiers, C. R. Acad. Sci., Paris, Ser. I, Vol. 306 (1988), pp. 511-514. [From Jonathan Sondow, Nov 17 2009]
- Hubert Delange, Sur des formules de Atle Selberg, Acta Arith., Vol. 19 (1971), pp. 105-146.
- Steven R. Finch, Mathematical Constants, Errata and Addenda, Sec. 2.1.
- Emil Grosswald, The average order of an arithmetic function, Duke Mathematical Journal, Vol. 23, No. 1 (1956), pp. 41-44.
- Jean-Louis Nicolas, Sur la distribution des nombres entiers ayant une quantite fixée de facteurs premiers, Acta Arith., Vol. 44 (1984), pp. 191-200.
- Alfred Rényi, On the density of certain sequences of integers, Publications de l'Institut Mathématique, Vol. 8 (1955), pp. 157-162.
Crossrefs
Programs
-
Mathematica
s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, 160}]; RealDigits[1/C2][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 30 2012, after Pari program in A005597 *) $MaxExtraPrecision = 300; digits = 105; terms = 600; P[n_] := PrimeZetaP[n] - 1/2^n; LR = Join[{0, 0}, LinearRecurrence[{3, -2}, {2, 6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 19 2016 *)
-
PARI
prodeulerrat((1 + 1/(p*(p-2))),,3) \\ Hugo Pfoertner, Aug 08 2020
Formula
Equals 1/A005597.
Equals Product_{prime p>2} (p-1)^2/(p-2)p = (2^2/1*3)(4^2/3*5)(6^2/5*7)(10^2/9*11) ....
Comments