A167928 Number of partitions of n that do not contain 1 as a part and whose parts are not the same divisor of n.
1, 0, 0, 0, 0, 1, 1, 3, 4, 6, 9, 13, 16, 23, 31, 38, 51, 65, 83, 104, 132, 162, 207, 252, 313, 381, 475, 571, 703, 846, 1032, 1237, 1502, 1791, 2164, 2570, 3086, 3659, 4375, 5167, 6146, 7244, 8584, 10086, 11909, 13954, 16421, 19195, 22510, 26250, 30696, 35714
Offset: 0
Keywords
Examples
The partitions of 6 are: 6 ....................... All parts are the same divisor of n. 5 + 1 ................... Contains 1 as a part. 4 + 2 ................... All parts are not the same divisor of n. <------(1) 4 + 1 + 1 ............... Contains 1 as a part. 3 + 3 ................... All parts are the same divisor of n. 3 + 2 + 1 ............... Contains 1 as a part. 3 + 1 + 1 + 1 ........... Contains 1 as a part. 2 + 2 + 2 ............... All parts are the same divisor of n. 2 + 2 + 1 + 1 ........... Contains 1 as a part. 2 + 1 + 1 + 1 + 1 ....... Contains 1 as a part. 1 + 1 + 1 + 1 + 1 + 1 ... Contains 1 as a part. Then a(6) = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Omar E. Pol, Illustration of the shell model of partitions (2D and 3D view)
- Omar E. Pol, Illustration of the shell model of partitions (2D view)
- Omar E. Pol, Illustration of the shell model of partitions (3D view)
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t<>1, 1, 0), `if`(i<2, 0, add(b(n-i*j, i-1, `if`(j=0, t, max(0, t-1))), j=0..n/i))) end: a:= n-> b(n, n, 2): seq(a(n), n=0..60); # Alois P. Heinz, May 24 2013
-
Mathematica
Prepend[Array[ n \[Function] Length@Select[IntegerPartitions[n, All, Range[2, n - 1]], Length[Union[ # ]] > 1 &], 40], 1] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *) b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t != 1, 1, 0], If[i < 2, 0, Sum[b[n - i*j, i - 1, If[j == 0, t, Max[0, t - 1]]], {j, 0, n/i}]]]; a[n_] := b[n, n, 2]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
Extensions
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
More terms from Alois P. Heinz, May 24 2013
Comments