A167932 Number of partitions of n such that all parts are equal or all parts are distinct.
1, 1, 2, 3, 4, 4, 7, 6, 9, 10, 13, 13, 20, 19, 25, 30, 36, 39, 51, 55, 69, 79, 92, 105, 129, 144, 168, 195, 227, 257, 303, 341, 395, 451, 515, 588, 676, 761, 867, 985, 1120, 1261, 1433, 1611, 1821, 2053, 2307, 2591, 2919, 3266, 3663, 4100, 4587, 5121, 5725, 6381
Offset: 0
Keywords
Examples
The partitions of 6 are: 6 .............. All parts are distinct ..... (1). 5+1 ............ All parts are distinct ..... (2). 4+2 ............ All parts are distinct ..... (3). 4+1+1 .......... Only some parts are equal. 3+3 ............ All parts are equal ........ (4). 3+2+1 .......... All parts are distinct ..... (5). 3+1+1+1 ........ Only some parts are equal. 2+2+2 .......... All parts are equal ........ (6). 2+2+1+1 ........ Only some parts are equal. 2+1+1+1+1 ...... Only some parts are equal. 1+1+1+1+1+1 .... All parts are equal ........ (7). So a(6) = 7.
Links
Crossrefs
Programs
-
Mathematica
ds[n_]:=Module[{lun=Length[Union[n]]},Length[n]==lun||lun==1]; Table[ Count[ IntegerPartitions[n],?(ds)],{n,0,60}] (* _Harvey P. Dale, Sep 13 2011 *)
Extensions
More terms from D. S. McNeil, May 10 2010
Comments