A167990 Elements in A126988 (by row) that are not 1.
0, 2, 0, 3, 0, 0, 4, 2, 0, 0, 5, 0, 0, 0, 0, 6, 3, 2, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 8, 4, 0, 2, 0, 0, 0, 0, 9, 0, 3, 0, 0, 0, 0, 0, 0, 10, 5, 0, 0, 2, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Table begins: 0; 2, 0; 3, 0, 0; 4, 2, 0, 0; 5, 0, 0, 0, 0; 6, 3, 2, 0, 0, 0; 7, 0, 0, 0, 0, 0, 0; 8, 4, 0, 2, 0, 0, 0, 0; 9, 0, 3, 0, 0, 0, 0, 0, 0; 10, 5, 0, 0, 2, 0, 0, 0, 0, 0; 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 0;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
[k eq n or (n mod k) ne 0 select 0 else n/k: k in [1..n], n in [1..15]]; // G. C. Greubel, Jan 13 2023
-
Mathematica
Table[If[k==n || Mod[n, k]!=0, 0, n/k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 13 2023 *)
-
SageMath
def A167990(n, k): if (k==n or n%k!=0): return 0 else: return n/k flatten([[A167990(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jan 13 2023
Formula
From G. C. Greubel, Jan 13 2023: (Start)
T(n, k) = 0 if k = n or (n mod k) != 0, otherwise T(n, k) = n/k.
T(n, 1) = n - [n=1].
T(m*n, n) = m, m >= 2.
Sum_{k=1..n} T(n, k) = A039653(n). (End)
Comments