A168013 a(n) = Sum of all divisors of all numbers < (n+1)^2.
8, 56, 189, 491, 1007, 1930, 3276, 5314, 8082, 11973, 16783, 23355, 31314, 41380, 53566, 68510, 85771, 106981, 130973, 159470, 192020, 229762, 271873, 320779, 375031, 436311, 504464, 581422, 664364, 759025, 860907, 973989, 1097783, 1233366, 1378996, 1540522
Offset: 1
Keywords
Examples
For n=2 the a(2)=56 because the numbers < (2+1)^2 are 1,2,3,4,5,6,7 and 8. Then a(2) = sigma(1)+sigma(2)+sigma(3)+sigma(4)+sigma(5)+sigma(6)+sigma(7)+sigma(8) = 1+3+4+7+6+12+8+15 = 56, where sigma(n) is the sum of divisor of n (see A000203).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
A168012[n_]:=Sum[DivisorSigma[1,k],{k,n^2,(n+1)^2-1}]; Accumulate[Array[A168012,50]] (* Paolo Xausa, Oct 23 2023 *)
-
Python
def A168013(n): m = n*(n+2) return sum((q:=m//k)*((k<<1)+q+1) for k in range(1,n+1))-n**2*(n+1)>>1 # Chai Wah Wu, Oct 23 2023
Formula
a(n) = A024916(n^2+2*n). - Jason Yuen, Oct 08 2024
Extensions
More terms from Sean A. Irvine, Dec 07 2009
Comments