A168036 Difference between n' and n, where n' is the arithmetic derivative of n (A003415).
0, -1, -1, -2, 0, -4, -1, -6, 4, -3, -3, -10, 4, -12, -5, -7, 16, -16, 3, -18, 4, -11, -9, -22, 20, -15, -11, 0, 4, -28, 1, -30, 48, -19, -15, -23, 24, -36, -17, -23, 28, -40, -1, -42, 4, -6, -21, -46, 64, -35, -5, -31, 4, -52, 27, -39, 36, -35, -27, -58, 32, -60, -29
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a168036 n = a003415 n - n -- Reinhard Zumkeller, May 22 2015
-
Maple
with(numtheory); A168036:=proc(q) local n,p; for n from 0 to q do print(n*add(op(2,p)/op(1,p),p=ifactors(n)[2])-n); od; end: A168036(1000); # Paolo P. Lava, Nov 05 2012
-
Mathematica
np[k_] := Module[{f, n, m, p}, If[k < 2, np[k] = 0; Return[0], If[PrimeQ[k], np[k] = 1; Return[1], f = FactorInteger[k, 2]; m = f[[1, 1]]; n = k/m; p = m np[n] + n np[m]; np[k] = p; Return[p]]]]; Table[np[n] - n, {n, 0, 100}] (* Robert Price, Mar 14 2020 *)
Formula
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = -1 + Sum_{p prime} 1/(p*(p-1)) = A136141 - 1 = -0.226843... . - Amiram Eldar, Dec 08 2023
Comments