A168068 Array T(n,k) read by antidiagonals: T(n,2k+1) = 2k+1. T(n,2k) = 2^n*k.
0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 2, 0, 1, 8, 3, 4, 5, 0, 1, 16, 3, 8, 5, 3, 0, 1, 32, 3, 16, 5, 6, 7, 0, 1, 64, 3, 32, 5, 12, 7, 4, 0, 1, 128, 3, 64, 5, 24, 7, 8, 9, 0, 1, 256, 3, 128, 5, 48, 7, 16, 9, 5, 0, 1, 512, 3, 256, 5, 96, 7, 32, 9, 10, 11, 0, 1, 1024, 3, 512, 5, 192, 7, 64, 9, 20, 11, 6, 0, 1, 2048, 3, 1024, 5
Offset: 0
Examples
The array starts in row n=0 with columns k>=0 as: 0,1,1,3,2,5,3,7,4, A026741 0,1,2,3,4,5,6,7,8, A001477 0,1,4,3,8,5,12,7,16, A022998 0,1,8,3,16,5,24,7,32, A144433 0,1,16,3,32,5,48,7,64, 0,1,32,3,64,5,96,7,128,
Programs
-
Maple
A168068 := proc(n,k) if type(k,'odd') then k; else 2^(n-1)*k ; end if; end proc: # R. J. Mathar, Jan 22 2011
Comments