cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168019 Square array A(n,k) read by antidiagonals, in which row n lists the number of partitions of n into parts divisible by k+1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 0, 0, 0, 1, 7, 2, 1, 0, 0, 1, 11, 0, 0, 0, 0, 0, 1, 15, 3, 0, 1, 0, 0, 0, 1, 22, 0, 2, 0, 0, 0, 0, 0, 1, 30, 5, 0, 0, 1, 0, 0, 0, 0, 1, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 56, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2009

Keywords

Comments

Note that column k lists each partition number A000041 followed by k zeros. See also A168020 and A168021.
Let A(n,k) denote the number of partitions of n into parts divisible by k+1. Let p(n) denote the number of partitions of n. If k+1 is a divisor of n then A(n,k) = p(n/(k+1)) otherwise A(n,k) = 0. [Conjectured by Omar E. Pol, Nov 25 2009] - this is trivial, just divide each part size by k - Franklin T. Adams-Watters, May 14 2010.

Examples

			The array, A(n, k), begins:
==================================================
... Column k: 0.. 1. 2. 3. 4. 5. 6. 7. 8. 9 10 11
. Row ...........................................
...n ............................................
==================================================
.. 0 ........ 1,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
.. 1 ........ 1,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 2 ........ 2,  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 3 ........ 3,  0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 4 ........ 5,  2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
.. 5 ........ 7,  0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
.. 6 ....... 11,  3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0,
.. 7 ....... 15,  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
.. 8 ....... 22,  5, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0,
.. 9 ....... 30,  0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0,
. 10 ....... 42,  7, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0,
. 11 ....... 56,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
. 12 ....... 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,
...
Antidiagonal triangle, T(n, k), begins as:
   1;
   1, 1;
   2, 0, 1;
   3, 1, 0, 1;
   5, 0, 0, 0, 1;
   7, 2, 1, 0, 0, 1;
  11, 0, 0, 0, 0, 0, 1;
  15, 3, 0, 1, 0, 0, 0, 1;
  22, 0, 2, 0, 0, 0, 0, 0, 1;
  30, 5, 0, 0, 1, 0, 0, 0, 0, 1;
  42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[(n-k)/(k+1)], PartitionsP[(n-k)/(k+1)], 0];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 13 2023 *)
  • SageMath
    def A168019(n,k): return number_of_partitions((n-k)/(k+1)) if ((n-k)%(k+1))==0 else 0
    flatten([[A168019(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jan 13 2023

Formula

From G. C. Greubel, Jan 13 2023: (Start)
A(n, k) = A000041(n/(k+1)) if (k+1)|n, otherwise 0 (array).
T(n, k) = A000041((n-k)/(k+1)) if (k+1)|(n-k), otherwise 0 (antidiagonals).
A(n, 0) = T(n, 0) = A000041(n).
T(2*n, n) = A(n, n) = A000007(n).
Sum_{k=0..n} T(n, k) = A083710(n+1). (End)

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010
Edited by Franklin T. Adams-Watters, May 14 2010

A168121 Triangle T(n,k) read by rows in which column k lists each number A000009 followed by k-1 zeros, for k>0.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 3, 0, 0, 0, 1, 4, 2, 1, 0, 0, 1, 5, 0, 0, 0, 0, 0, 1, 6, 2, 0, 1, 0, 0, 0, 1, 8, 0, 2, 0, 0, 0, 0, 0, 1, 10, 3, 0, 0, 1, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 15, 4, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2009

Keywords

Examples

			Triangle begins:
==================================================
... Column k: 1. 2. 3. 4. 5. 6. 7. 8. 9 10 11 12
. Row ...........................................
...n ............................................
==================================================
.. 1 ........ 1,
.. 2 ........ 1, 1,
.. 3 ........ 2, 0, 1,
.. 4 ........ 2, 1, 0, 1,
.. 5 ........ 3, 0, 0, 0, 1,
.. 6 ........ 4, 2, 1, 0, 0, 1,
.. 7 ........ 5, 0, 0, 0, 0, 0, 1,
.. 8 ........ 6, 2, 0, 1, 0, 0, 0, 1,
.. 9 ........ 8, 0, 2, 0, 0, 0, 0, 0, 1,
. 10 ....... 10, 3, 0, 0, 1, 0, 0, 0, 0, 1,
. 11 ....... 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
. 12 ....... 15, 4, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1,
...
		

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010
Showing 1-2 of 2 results.