A168019 Square array A(n,k) read by antidiagonals, in which row n lists the number of partitions of n into parts divisible by k+1.
1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 0, 0, 0, 1, 7, 2, 1, 0, 0, 1, 11, 0, 0, 0, 0, 0, 1, 15, 3, 0, 1, 0, 0, 0, 1, 22, 0, 2, 0, 0, 0, 0, 0, 1, 30, 5, 0, 0, 1, 0, 0, 0, 0, 1, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 56, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
The array, A(n, k), begins: ================================================== ... Column k: 0.. 1. 2. 3. 4. 5. 6. 7. 8. 9 10 11 . Row ........................................... ...n ............................................ ================================================== .. 0 ........ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .. 1 ........ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .. 2 ........ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .. 3 ........ 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, .. 4 ........ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, .. 5 ........ 7, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, .. 6 ....... 11, 3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, .. 7 ....... 15, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, .. 8 ....... 22, 5, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, .. 9 ....... 30, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, . 10 ....... 42, 7, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, . 11 ....... 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, . 12 ....... 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1, ... Antidiagonal triangle, T(n, k), begins as: 1; 1, 1; 2, 0, 1; 3, 1, 0, 1; 5, 0, 0, 0, 1; 7, 2, 1, 0, 0, 1; 11, 0, 0, 0, 0, 0, 1; 15, 3, 0, 1, 0, 0, 0, 1; 22, 0, 2, 0, 0, 0, 0, 0, 1; 30, 5, 0, 0, 1, 0, 0, 0, 0, 1; 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Programs
-
Mathematica
T[n_, k_]:= If[IntegerQ[(n-k)/(k+1)], PartitionsP[(n-k)/(k+1)], 0]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 13 2023 *)
-
SageMath
def A168019(n,k): return number_of_partitions((n-k)/(k+1)) if ((n-k)%(k+1))==0 else 0 flatten([[A168019(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jan 13 2023
Formula
Extensions
Edited by Charles R Greathouse IV, Mar 23 2010
Edited by Franklin T. Adams-Watters, May 14 2010
Comments