cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168147 Primes of the form 10*n^3 + 1.

Original entry on oeis.org

11, 271, 641, 2161, 33751, 40961, 58321, 138241, 196831, 270001, 297911, 466561, 506531, 795071, 1326511, 1406081, 1851931, 2160001, 3890171, 4218751, 5314411, 5513681, 6585031, 7290001, 8043571, 11910161, 12597121, 12950291, 14815441
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 19 2009

Keywords

Comments

(1) These primes all with end digit 1=1^3 are concatenations of two CUBIC numbers: "n^3 1".
(2) It is conjectured that the sequence is infinite.
(3) It is an open problem if 3 consecutive naturals n exist which give such a prime.
No three such integers exist, as every n = 2 (mod 3) yields 10n^3 + 1 = 0 (mod 3). - Charles R Greathouse IV, Apr 24 2010

References

  • Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980
  • Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005

Crossrefs

Cf. A030430 (primes of the form 10*n+1).
Cf. A167535 (concatenation of two square numbers which give a prime).
See A168219 for the numbers n.

Programs

  • Magma
    [ a: n in [1..150] | IsPrime(a) where a is 10*n^3+1 ]; // Vincenzo Librandi, Jul 25 2011
  • Mathematica
    Select[Table[10*n^3+1,{n,1000}],PrimeQ] (* Vincenzo Librandi, Aug 01 2012 *)
  • PARI
    for(n=1,2e2, isprime(n^3*10+1) && print1(n^3*10+1", "))  \\ M. F. Hasler, Jul 24 2011
    

Formula

a(n) = 10*A168219(n)^3 + 1. \\ M. F. Hasler, Jul 24 2011