A168167 Numbers with d digits (d>0) which have at least 2d distinct primes as substrings.
1373, 3137, 3797, 5237, 6173, 11317, 11373, 13733, 13739, 13797, 17331, 19739, 19973, 21137, 21317, 21373, 21379, 22397, 22937, 23117, 23137, 23173, 23371, 23373, 23719, 23797, 23971, 24373, 26173, 26317, 27193, 27197, 29173, 29537
Offset: 1
Examples
The least number with d digits to have 2d distinct prime substrings is a(1)=1373, with 4 digits and #{3, 7, 13, 37, 73, 137, 373, 1373} = 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..2500
Programs
-
Maple
filter:= proc(n) local i,j,count,d,S,x,y; d:= ilog10(n)+1; count:= 0; S:= {}; for i from 0 to d-1 do x:= floor(n/10^i); for j from i to d-1 do y:= x mod 10^(j-i+1); if not member(y,S) and isprime(y) then count:= count+1; S:= S union {y}; if count = 2*d then return true fi fi od od; false end proc: select(filter, [$10..10^5]); # Robert Israel, Nov 11 2020
-
PARI
{for( p=1, 1e6, #prime_substrings(p) >= #Str(p)*2 & print1(p", "))} /* see A168168 for prime_substrings() */
Comments