A168253 a(n) is the smallest prime q such that, for the previous prime p and the following prime r, the fraction (q-p)/(r-q) has denominator n (or 0, if such a prime does not exist).
5, 3, 23, 89, 139, 199, 113, 1933, 523, 3089, 1129, 1669, 2477, 2971, 4297, 5591, 1327, 28351, 30593, 19333, 16141, 36389, 81463, 28229, 31907, 19609, 35617, 82073, 44293, 102701, 34061, 288583, 221327, 134513, 173359, 360091
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..127
Programs
-
Mathematica
f[n_] := Block[{p = 2, q = 3, r = 5}, While[ Numerator[(r - q)/(q - p)] != n, p = q; q = r; r = NextPrime@ r]; q]; Array[f, 36] p = 2; q = 3; r = 5; t[] = 0; While[q < 100000000, If[ t[ Denominator[(q - p)/(r - q)]] == 0, t[ Denominator[(q - p)/(r - q)]] = q]; p = q; q = r; r = NextPrime@ r]; t@# & /@ Range@100 (* _Robert G. Wilson v, Dec 11 2016 *)
Comments