cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168313 Triangle read by rows, retain 1's as rightmost diagonal of A101688 and replace all other 1's with 2's.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 2, 1, 0, 0, 0, 2, 2, 1, 0, 0, 0, 2, 2, 2, 1, 0, 0, 0, 0, 2, 2, 2, 1, 0, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 22 2009

Keywords

Comments

Row sums = odd integers repeated: (1, 1, 3, 3, 5, 5,...).
Eigensequence of the triangle = A168314: (1, 1, 3, 5, 13, 29, 71, 165, 401,...).

Examples

			First few rows of the triangle =
1;
0, 1;
0, 2, 1;
0, 0, 2, 1;
0, 0, 2, 2, 1;
0, 0, 0, 2, 2, 1;
0, 0, 0, 2, 2, 2, 1;
0, 0, 0, 0, 2, 2, 2, 1;
0, 0, 0, 0, 2, 2, 2, 2, 1;
0, 0, 0, 0, 0, 2, 2, 2, 2, 1;
0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1;
0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1;
...
		

Crossrefs

Programs

  • Mathematica
    rows = 11;
    A = Array[Which[#1 == 1, 1, #1 <= #2, 2, True, 0]&, {rows, rows}];
    Table[A[[i-j+1, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* Jean-François Alcover, Aug 08 2018 *)

Formula

Triangle read by rows, retain 1's as rightmost diagonal of A101688 and replace all other 1's with 2's.
From Boris Putievskiy, Jan 09 2013: (Start)
a(n) = 2*A101688(n)-A023531(n).
a(n) = 2*floor((2*A002260(n)+1)/(A003056(n)+3))*A002260(n)-A023531(n).
a(n) = 2*floor((2*n-t*(t+1)+1)/(t+3))*(n-t*(t+1)/2) - floor((sqrt(8*n+1)-1)/2) + t, where t = floor((-1+sqrt(8*n-7))/2). (End)