A168323 a(1)=3, a(2)=5; a(n+1) is the smallest prime number greater than a(n-1) and not equal to a(n) such that the sum of any three consecutive terms is a prime.
3, 5, 11, 7, 13, 11, 17, 13, 23, 17, 31, 19, 47, 23, 61, 29, 67, 31, 83, 37, 103, 41, 107, 43, 113, 67, 127, 83, 137, 97, 139, 101, 149, 103, 157, 107, 167, 109, 173, 127, 179, 137, 193, 149, 199, 151, 227, 163, 229, 179, 233, 181, 239, 193, 241, 197, 263, 199, 271
Offset: 1
Keywords
Programs
-
Mathematica
a=3;b=5;lst={a,b};Do[Do[If[PrimeQ[q]&&PrimeQ[a+b+q]&&q!=b,c=q;Break[]],{q,a+2,9!,2}];AppendTo[lst,c];a=b;b=c,{n,6!}];lst