A375642 a(n) is the number of i for which n - Fibonacci(i) is prime.
0, 1, 3, 3, 3, 3, 3, 4, 1, 3, 2, 3, 3, 3, 3, 3, 1, 4, 3, 4, 2, 2, 2, 5, 2, 3, 1, 2, 1, 3, 3, 5, 1, 3, 0, 3, 3, 3, 3, 2, 2, 4, 2, 5, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 1, 4, 3, 5, 2, 3, 1, 3, 2, 4, 2, 1, 2, 5, 2, 6, 3, 2, 1, 2, 2, 4, 3, 2, 1, 5, 1, 3, 2, 2, 1, 2, 3, 5, 1, 3, 1, 3, 2, 3, 1
Offset: 1
Keywords
Examples
a(5) = 3 because 5 - Fibonacci(0) = 5, 5 - Fibonacci(3) = 3 and 5 - Fibonacci(4) = 2 are prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
fcount:= proc(n) local f,i,d,c; c:= 0; for i from 0 do f:= combinat:-fibonacci(i); if f >= n then return c fi; if isprime(n-f) then c:= c+1; fi od; end proc: map(f, [$1..200]);
-
Mathematica
a[n_]:=Sum[Boole[PrimeQ[n-Fibonacci[i]]],{i,Select[Range[0,n],n>Fibonacci[#]&]}]; Array[a,99] (* Stefano Spezia, Aug 23 2024 *)
Comments