A168406 E.g.f.: Sum_{n>=0} arctan(2^n*x)^n/n!.
1, 2, 16, 496, 63488, 32899840, 68049141760, 560546415810560, 18415229458563727360, 2416302337337071616327680, 1267360474688679165942982246400, 2658246833688954938616062542151680000
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 496*x^3/3! + 63488*x^4/4! + ... A(x) = 1 + arctan(2*x) + arctan(4*x)^2/2! + arctan(8*x)^3/3! + arctan(16*x)^4/4! + ... + arctan(2^n*x)^n/n! + ... a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(arctan(x)): G(x) = 1 + x + x^2/2! - x^3/3! - 7*x^4/4! + 5*x^5/5! + 145*x^6/6! + ... + A002019(n)*x^n/n! + ...
Crossrefs
Programs
-
PARI
{a(n)=n!*polcoeff(sum(k=0,n,atan(2^k*x +x*O(x^n))^k/k!),n)}
-
PARI
{a(n)=n!*polcoeff(exp(2^n*atan(x +x*O(x^n))),n)}
Formula
a(n) = [x^n/n!] exp(2^n*arctan(x)) for n >= 0.