cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168421 Small Associated Ramanujan Prime, p_(i-n).

Original entry on oeis.org

2, 7, 11, 17, 23, 29, 31, 37, 37, 53, 53, 59, 67, 79, 79, 89, 97, 97, 127, 127, 127, 127, 127, 137, 137, 149, 157, 157, 179, 179, 191, 191, 211, 211, 211, 223, 223, 223, 233, 251, 251, 257, 293, 293, 307, 307, 307, 307, 307, 331, 331, 331
Offset: 1

Views

Author

John W. Nicholson, Nov 25 2009

Keywords

Comments

a(n) is the smallest prime p_(k+1-n) on the left side of the Ramanujan Prime Corollary, 2*p_(i-n) > p_i for i > k, where the n-th Ramanujan Prime R_n is the k-th prime p_k. [Comment clarified and shortened by Jonathan Sondow, Dec 20 2013]
Smallest prime number, a(n), such that if x >= a(n), then there are at least n primes between x and 2x exclusively.
This is very useful in showing the number of primes in the range [p_k, 2*p_(i-n)] is greater than or equal to 1. By taking into account the size of the gaps between primes in [p_(i-n),p_k], one can see that the average prime gap is about log(p_k) using the following R_n / (2*n) ~ log(R_n).
Proof of Corollary: See Wikipedia link
The number of primes until the next Ramanujan prime, R_(n+1), can be found in A190874.
Not the same as A124136.
A084140(n) is the smallest integer where ceiling ((A104272(n)+1)/2), a(n) is the next prime after A084140(n). - John W. Nicholson, Oct 09 2013
If a(n) is in A005382(k) then A005383(k) is a twin prime with the Ramanujan prime, A104272(n) = A005383(k) - 2, and A005383(k) = A168425(n). If this sequence has an infinite number of terms in A005382, then the twin prime conjecture can be proved. - John W. Nicholson, Dec 05 2013
Except for A000101(1)=3 and A000101(2)=5, A000101(k) = a(n). Because of the large size of a gap, there are many repeats of the prime number in this sequence. - John W. Nicholson, Dec 10 2013
For some n and k, we see that a(n) = A104272(k) as to form a chain of primes similar to a Cunningham chain. For example (and the first example), a(2) = 7, links A104272(2) = 11 = a(3), links A104272(3) = 17 = a(4), links A104272(4) = 29 = a(6), links A104272(6) = 47. Note that the links do not have to be of a form like q = 2*p+1 or q = 2*p-1. - John W. Nicholson, Dec 14 2013
Srinivasan's Lemma (2014): p_(k-n) < (p_k)/2 if R_n = p_k and n > 1. Proof: By the minimality of R_n, the interval ((p_k)/2,p_k] contains exactly n primes, so p_(k-n) < (p_k)/2. - Jonathan Sondow, May 10 2014
In spite of the name Small Associated Ramanujan Prime, a(n) is not a Ramanujan prime for many values of n. - Jonathan Sondow, May 10 2014
Prime index of a(n), pi(a(n)) = i-n, is equal to A179196(n) - n + 1. - John W. Nicholson, Sep 15 2015
All maximal prime pairs in A002386 and A000101 are bounded by, for a particular n and i, the prime A104272(n) and twice a prime in A000040() following a(n). This means the gap between maximal prime pair cannot be more than twice the prior maximal prime gap. - John W. Nicholson, Feb 07 2019

Examples

			For n=10, the n-th Ramanujan prime is A104272(n)= 97, the value of k = 25, so i is >= 26, i-n >= 16, the i-n prime is 53, and 2*53 = 106. This leaves the range [97, 106] for the 26th prime which is 101. In this example, 53 is the small associated Ramanujan prime.
		

Crossrefs

Cf. A165959 (range size), A230147 (records).

Programs

Formula

a(n) = prime(primepi(A104272(n)) + 1 - n).
a(n) = nextprime(A084139(n+1)), where nextprime(x) is the next prime > x. Note: some A084139(n) may be prime, therefore nextprime(x) not equal to x. - John W. Nicholson, Oct 11 2013
a(n) = nextprime(A084140(n)). - John W. Nicholson, Oct 11 2013

Extensions

Extended by T. D. Noe, Nov 22 2010