cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168423 Triangle read by rows: expansion of (1 - x)/(exp(t)*(1 - x*exp(t*(1 - x)))).

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 7, 1, -1, 1, 1, 21, 21, 1, 1, -1, 1, 51, 161, 51, 1, -1, 1, 1, 113, 813, 813, 113, 1, 1, -1, 1, 239, 3361, 7631, 3361, 239, 1, -1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865
Offset: 0

Views

Author

Roger L. Bagula, Nov 25 2009

Keywords

Comments

This sequence was derived from the Eulerian number umbral calculus expansion and A046802 by taking the exp(t) term and inverting it.
What is interesting here is the '1,-1' terms that appear.
I had thought I would get "1,5,1" not "1,7,1" from this function.
An OEIS search came up with A046739 which has the same internal symmetric number structure.
Inverse binomial transform of Eulerian numbers A123125. [Paul Barry, May 10 2011]

Examples

			{1},
{-1, 1},
{1, -1, 1},
{-1, 1, 1, 1},
{1, -1, 1, 7, 1},
{-1, 1, 1, 21, 21, 1},
{1, -1, 1, 51, 161, 51, 1},
{-1, 1, 1, 113, 813, 813, 113, 1},
{1, -1, 1, 239, 3361, 7631, 3361, 239, 1},
{-1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1},
{1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1}
		

Crossrefs

Cf. A046802, A046739, A000166 (row sums), A123125.

Programs

  • Mathematica
    p[t_] = (1 - x)/(Exp[t]*(1 - x*Exp[t*(1 - x)]))
    a = Table[ CoefficientList[FullSimplify[ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}];
    Flatten[a]

Formula

E.g.f. sum(T(n,k) t^n/n! x^k) = p(x,t) = (1 - x)/(exp(t)*(1 - x*exp(t*(1 - x))))
T(n,k)=sum{j=0..n, (-1)^(n-j)*C(n,j)*A123125(j,k)}. [Paul Barry, May 10 2011]