A168423 Triangle read by rows: expansion of (1 - x)/(exp(t)*(1 - x*exp(t*(1 - x)))).
1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 7, 1, -1, 1, 1, 21, 21, 1, 1, -1, 1, 51, 161, 51, 1, -1, 1, 1, 113, 813, 813, 113, 1, 1, -1, 1, 239, 3361, 7631, 3361, 239, 1, -1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865
Offset: 0
Examples
{1}, {-1, 1}, {1, -1, 1}, {-1, 1, 1, 1}, {1, -1, 1, 7, 1}, {-1, 1, 1, 21, 21, 1}, {1, -1, 1, 51, 161, 51, 1}, {-1, 1, 1, 113, 813, 813, 113, 1}, {1, -1, 1, 239, 3361, 7631, 3361, 239, 1}, {-1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1}, {1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1}
Programs
-
Mathematica
p[t_] = (1 - x)/(Exp[t]*(1 - x*Exp[t*(1 - x)])) a = Table[ CoefficientList[FullSimplify[ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]; Flatten[a]
Formula
E.g.f. sum(T(n,k) t^n/n! x^k) = p(x,t) = (1 - x)/(exp(t)*(1 - x*exp(t*(1 - x))))
T(n,k)=sum{j=0..n, (-1)^(n-j)*C(n,j)*A123125(j,k)}. [Paul Barry, May 10 2011]
Comments