cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168448 G.f. satisfies: A(x/A(x)^2) = C(x) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 4, 26, 226, 2395, 29278, 398499, 5899534, 93507783, 1569405110, 27672405800, 509622262860, 9759305238932, 193673399146066, 3972141366536794, 84010899306559470, 1829057795368804875, 40931310532585505770, 940322157062673670051, 22152626055397162566438
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 226*x^4 + 2395*x^5 +...
A(x/A(x)^2) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x, F=sum(k=0, n, binomial(2*k+1, k)/(2*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F, x, serreverse(x/(A+x*O(x^n))^2))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+A^2*serreverse(x/(A+x*O(x^n))^2)); polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = 1 + A(x)^2*Series_Reversion[x/A(x)^2].
G.f. satisfies: A( (x-x^2)/A(x-x^2)^2 ) = 1/(1-x).
G.f. satisfies: A( (x/(1+x)^2)/A(x/(1+x)^2)^2 ) = 1 + x.