A168577 Pascal's triangle, first two columns and diagonal removed.
3, 6, 4, 10, 10, 5, 15, 20, 15, 6, 21, 35, 35, 21, 7, 28, 56, 70, 56, 28, 8, 36, 84, 126, 126, 84, 36, 9, 45, 120, 210, 252, 210, 120, 45, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 78, 286, 715, 1287, 1716, 1716, 1287
Offset: 2
Examples
3; 6, 4; 10, 10, 5; 15, 20, 15, 6; 21, 35, 35, 21, 7; 28, 56, 70, 56, 28, 8; 36, 84, 126, 126, 84, 36, 9; 45, 120, 210, 252, 210, 120, 45, 10; 55, 165, 330, 462, 462, 330, 165, 55, 11; 66, 220, 495, 792, 924, 792, 495, 220, 66, 12; 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13;
Programs
-
Mathematica
p[x_, n_] = ((x + 1)^n - x^n - n*x - 1)/x^2; Table[CoefficientList[p[x, n], x], {n, 3, 13}]; Flatten[%]
Formula
T(n,k)= [x^k] ((x + 1)^n - x^n - n*x - 1), 2<=k
T(n,k) = binomial(n,k).
Comments