A168594 G.f. A(x) satisfies: A(x) = F(x/A(x)) where A(x*F(x)) = F(x) = g.f. of A133053, which is the squares of Motzkin numbers (A001006).
1, 1, 3, 6, 20, 70, 302, 1386, 6902, 35862, 194202, 1082642, 6191680, 36141118, 214715244, 1294849186, 7911159522, 48888093910, 305165808290, 1921992409066, 12202404037088, 78031629139246, 502263432618224, 3252160882871210
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 20*x^4 + 70*x^5 + 302*x^6 +... A(x) satisfies: A(x*F(x)) = F(x) = g.f. of A133053: F(x) = 1 + x + 4*x^2 + 16*x^3 + 81*x^4 + 441*x^5 + 2601*x^6 +...+ A001006(n)^2*x^n +...
Programs
-
PARI
{a(n)=if(n==0,1,polcoeff(x/serreverse(x*sum(m=0,n,polcoeff((1/x)*serreverse(x/(1+x+x^2+x^2*O(x^m))), m)^2 *x^m)+x^2*O(x^n)),n))}
Formula
G.f.: A(x) = x/Series_Reversion(x*F(x)) where F(x) = g.f. of A133053.