A168606 The number of ways of partitioning the multiset {1,1,1,2,3,...,n-2} into exactly four nonempty parts.
1, 4, 20, 102, 496, 2294, 10200, 44062, 186416, 776934, 3203080, 13101422, 53279136, 215749174, 870919160, 3507493182, 14101520656, 56620923014, 227128606440, 910449955342, 3647607982976, 14607859562454, 58483727432920
Offset: 4
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
Programs
-
Magma
[(10*4^(n-4) -5*3^(n-3) +9*2^(n-4) -1)/3: n in [4..30]]; // G. C. Greubel, Feb 07 2021
-
Mathematica
a[n_]:= (10*4^(n-4) - 5*3^(n-3) + 9*2^(n-4) - 1)/3; Table[a[n], {n, 4, 30}]
-
Sage
[(10*4^(n-4) -5*3^(n-3) +9*2^(n-4) -1)/3 for n in (4..30)] # G. C. Greubel, Feb 07 2021
Formula
a(n) = (10*4^(n-4) - 5*3^(n-3) + 9*2^(n-4) - 1)/3.
The shifted e.g.f. is (10*exp(4*x) - 15*exp(3*x) + 9*exp(2*x) - exp(x))/3.
G.f.: x^4*(1 -6*x +15*x^2 -8*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).
Extensions
Last element of the multiset in the definition corrected by Martin Griffiths, Dec 02 2009
Comments