A168677 Lexicographically earliest positive integer sequence such that no sum of consecutive terms is a positive power of 4.
1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 9, 1
Offset: 1
Keywords
Examples
Assume that a(1) - a(7) have been determined as {1,1,1,5,1,1,1}. Then a(8)=1 gives consecutive terms 1,1,1,1, summing to 4; a(8)=2 gives 1+1+2=4; ... etc...; a(8)=8 gives 5+1+1+1+8=16; but a(8)=9 is ok, giving no sum of consecutive terms equalling 4,16,64,... .
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
Programs
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{1, 1, 1, 5, 1, 1, 1, 9},105] (* Ray Chandler, Aug 25 2015 *)
Comments