cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169586 Primes p in A168540 for which q = 3^3 + 10^2*p^3 (A168487) is prime.

Original entry on oeis.org

2, 5, 7, 13, 17, 29, 61, 109, 137, 149, 191, 223, 227, 269, 311, 331, 337, 359, 389, 397, 409, 433, 457, 467, 491, 587, 619, 653, 661, 709, 727
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 02 2009

Keywords

Comments

It is conjectured that sequence is infinite

Examples

			(1) 3^3+10^2*2^3=827=prime(144) gives a(1)=2=prime(1)
(2) 3^3+10^2*5^3=12527=prime(1496) gives a(2)=5=prime(3)
(3) 3^3+10^2*13^3=219727=prime(19588) gives a(4)=13=prime(6)
		

References

  • Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
  • Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005
  • Arnold Scholz, Bruno Schoeneberg: Einführung in die Zahlentheorie, Walter de Gruyter, 5. Auflage 1973

Crossrefs

A000040 The prime numbers
A167535 Concatenation of two square numbers which give a prime
A168147 Primes of the form p = 1 + 10*n^3 for a natural number n
A168327 Primes of concatenated form p= "1 n^3"
A168375 Naturals n for which the concatenation p= "1 n^3"is prime
A168487 Primes of form p = 3^3 + 10^2*n^3 with a natural number n
A168540 Naturals n for which the concatenation p = 3^3 + 10^2*n^3 is prime