A169611 Number of prime divisors of n that are not greater than 3, counted with multiplicity.
0, 1, 1, 2, 0, 2, 0, 3, 2, 1, 0, 3, 0, 1, 1, 4, 0, 3, 0, 2, 1, 1, 0, 4, 0, 1, 3, 2, 0, 2, 0, 5, 1, 1, 0, 4, 0, 1, 1, 3, 0, 2, 0, 2, 2, 1, 0, 5, 0, 1, 1, 2, 0, 4, 0, 3, 1, 1, 0, 3, 0, 1, 2, 6, 0, 2, 0, 2, 1, 1, 0, 5, 0, 1, 1, 2, 0, 2, 0, 4, 4, 1, 0, 3, 0, 1, 1, 3, 0, 3, 0, 2, 1, 1, 0, 6, 0, 1, 2, 2, 0, 2, 0, 3, 1
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a169611 = a001222 . a065331 -- Reinhard Zumkeller, Nov 19 2015
-
Maple
A169611 := proc(n) local f; a := 0 ; for f in ifactors(n)[2] do if op(1,f) <= 3 then a := a+op(2,f) ; end if; end do: return a; end proc: seq(A169611(n),n=1..100) ; # R. J. Mathar, Dec 04 2009
-
Mathematica
f[n_] := Plus @@ Last /@ Select[ FactorInteger@ n, 1 < #[[1]] < 4 &]; Array[f, 105] (* Robert G. Wilson v, Dec 19 2009 *)
-
PARI
A169611(n)=valuation(n,2)+valuation(n,3) \\ M. F. Hasler, Aug 24 2012
Formula
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/2. - Amiram Eldar, Jan 16 2022
Extensions
Definition corrected by M. F. Hasler, Aug 24 2012