cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169620 Hankel transform of quintuple factorial numbers A008548.

Original entry on oeis.org

1, 5, 1500, 74250000, 1176120000000000, 9780613920000000000000000, 63441756579801600000000000000000000000, 446492348463430358369280000000000000000000000000000000
Offset: 0

Views

Author

Paul Barry, Dec 03 2009

Keywords

Crossrefs

Cf. A008548.

Programs

  • GAP
    List([0..10], n-> Product([0..n], k-> ((5*k+1)*(5*k+5))^(n-k))); # G. C. Greubel, Aug 17 2019
  • Magma
    [(&*[((5*k+1)*(5*k+5))^(n-k): k in [0..n]]): n in [0..10]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    seq(product(((5*k+1)*(5*k+5))^(n-k), k = 0..n), n = 0..10); # G. C. Greubel, Aug 17 2019
  • Mathematica
    Table[Product[((5*k+1)*(5*k+5))^(n-k), {k,0,n}], {n,0,10}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    vector(10, n, n--; prod(k=0,n, ((5*k+1)*(5*k+5))^(n-k))) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [product(((5*k+1)*(5*k+5))^(n-k) for k in (0..n)) for n in (0..10)] # G. C. Greubel, Aug 17 2019
    

Formula

a(n) = Product_{k=0..n} ((5*k+1)*(5*k+5))^(n-k).
a(n) ~ (2*Pi)^(n + 3/5) * 5^(n*(n+1)) * n^(n^2 + 6*n/5 + 53/150) / (A * Gamma(1/5)^(n + 1/5) * exp(3*n^2/2 + 6*n/5 - 1/12 - c)), where A is the Glaisher-Kinkelin constant A074962 and c = zeta'(-1, 1/5) = 0.0831827651866002925663000008102352492418540625037508868... - Vaclav Kotesovec, Jan 23 2024