cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169642 a(n) = A005408(n) * A022998(n).

Original entry on oeis.org

0, 3, 20, 21, 72, 55, 156, 105, 272, 171, 420, 253, 600, 351, 812, 465, 1056, 595, 1332, 741, 1640, 903, 1980, 1081, 2352, 1275, 2756, 1485, 3192, 1711, 3660, 1953, 4160, 2211, 4692, 2485, 5256, 2775, 5852, 3081, 6480, 3403, 7140, 3741, 7832, 4095, 8556
Offset: 0

Views

Author

Paul Curtz, Apr 04 2010

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 0, -3 , 0, 1}, {0 , 3, 20, 21, 72, 55}, 47] (* Georg Fischer, Feb 22 2019 *)
  • PARI
    concat(0, Vec(-x*(3+20*x+12*x^2+12*x^3+x^4)/ ((x-1)^3*(1+x)^3) + O(x^50))) \\ Colin Barker, Dec 29 2016

Formula

From R. J. Mathar, Oct 09 2010: (Start)
a(n)= +3*a(n-2) -3*a(n-4) +a(n-6).
G.f.: -x*(3+20*x+12*x^2+12*x^3+x^4)/ ( (x-1)^3*(1+x)^3 ). (End)
From Colin Barker, Dec 29 2016: (Start)
a(n) = 4*n^2 + 2*n for n>0 and even.
a(n) = 2*n^2 + n for n odd. (End)
Sum_{n>=1} 1/a(n) = 1 + Pi/8 - 5*log(2)/4. - Amiram Eldar, Aug 12 2022

Extensions

Edited by N. J. A. Sloane, Apr 05 2010
More terms from R. J. Mathar, Oct 09 2010