cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169655 Numbers k such that 2^k is in A054861.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 45, 46, 47, 49, 53, 54, 55, 56, 58, 59, 60, 62, 64, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 82, 84, 85, 87, 88, 89, 91, 93
Offset: 1

Views

Author

Vladimir Shevelev, Apr 05 2010

Keywords

Comments

For a prime p, we call a number p-compact if the exponent of p in the factorization of the number is a power of two. However, if m=k!, then not all exponents of p of the form 2^t are possible. The sequence lists numbers t in possible exponents of the form 2^t of 3 in 3-compact factorials k!The question of description of the p-compact factorials is interesting since there exists only finite set of factorials compact over both 2 and an arbitrary fixed odd prime (cf. A177436). On the other hand, there exist infinitely many 2-compact factorials. However, up to now it is unknown, whether exist infinitely many p-compact factorials for a fixed odd prime p. It is expected that the answer to be in affirmative.

Crossrefs

Programs

  • Mathematica
    A054861 := (Plus @@ Floor[#/3^Range[Length[IntegerDigits[#, 3]] - 1]] &);DeleteCases[Table[n - n Sign[2^n - A054861[2^(n + 1) + NestWhile[# + 1 &, 1, 2^n - A054861[2^(n + 1) + #] >= 0 &]  - 1]],{n, 1, 125}], 0] (* Peter J. C. Moses, Apr 10 2012 *)

Extensions

More terms given by Peter J. C. Moses, Apr 07 2012