A169665 Numbers divisible by the sum of 4th powers of their digits.
1, 10, 100, 102, 110, 111, 1000, 1010, 1011, 1020, 1100, 1101, 1110, 1121, 1122, 1634, 2000, 2322, 4104, 5000, 8208, 9474, 10000, 10010, 10011, 10100, 10101, 10110, 10200, 10412, 11000, 11001, 11010, 11100, 11210, 11220, 12502, 12521, 14758
Offset: 1
Examples
12521 is a term since 1^4 + 2^4 + 5^4 + 2^4 + 1^4 = 659, and 12521 = 19*659; 89295 is a term since 8^4 + 9^4 + 2^4 + 9^4 + 5^4 = 17859, and 89295 = 5*17859.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Digit.
Programs
-
Maple
A:= proc(n) add(d^4, d=convert(n, base, 10)) ; end proc: for n from 1 to 200000 do:if irem( n,A(n))=0 then printf(`%d, `,n):else fi:od:
-
Mathematica
Select[Range[15000], Divisible[#, Plus @@ (IntegerDigits[#]^4)] &] (* Amiram Eldar, Jan 31 2021 *)
Formula
Numbers k such that A055013(k) | k.