A169712 The function W_n(8) (see Borwein et al. reference for definition).
1, 70, 639, 2716, 7885, 18306, 36715, 66424, 111321, 175870, 265111, 384660, 540709, 740026, 989955, 1298416, 1673905, 2125494, 2662831, 3296140, 4036221, 4894450, 5882779, 7013736, 8300425, 9756526, 11396295, 13234564, 15286741, 17568810, 20097331, 22889440
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub, and James Wan, Some Arithmetic Properties of Short Random Walk Integrals, May 2011.
- Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[-33*n+82*n^2-72*n^3+24*n^4: n in [1..40]]; // Vincenzo Librandi May 28 2017
-
Maple
A169712 := proc(n) W(n,8) ; end proc: seq(A169712(n),n=1..40) ; # uses W defined in A169715; R. J. Mathar, Mar 28 2012 a := n -> -33*n + 82*n^2 - 72*n^3 + 24*n^4: seq(a(n), n=1..28); # Peter Luschny, May 27 2017
-
Mathematica
Table[-33 n + 82 n^2 - 72 n^3 + 24 n^4, {n, 1, 40}] (* or *) CoefficientList[Series[(1 + 65 x + 299 x^2 + 211 x^3) /(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2017 *)
-
PARI
a(n)=-33*n+82*n^2-72*n^3+24*n^4 \\ Charles R Greathouse IV, Oct 21 2022
Formula
a(n) = -33*n + 82*n^2 - 72*n^3 + 24*n^4. - Peter Luschny, May 27 2017
G.f.: x*(1+65*x+299*x^2+211*x^3)/(1-x)^5. - Vincenzo Librandi, May 28 2017
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Vincenzo Librandi, May 28 2017