A030068 The "semi-Fibonacci numbers": a(n) = A030067(2n - 1), where A030067 is the semi-Fibonacci sequence.
1, 2, 3, 5, 6, 9, 11, 16, 17, 23, 26, 35, 37, 48, 53, 69, 70, 87, 93, 116, 119, 145, 154, 189, 191, 228, 239, 287, 292, 345, 361, 430, 431, 501, 518, 605, 611, 704, 727, 843, 846, 965, 991, 1136, 1145, 1299, 1334, 1523, 1525, 1716, 1753, 1981, 1992, 2231, 2279, 2566
Offset: 1
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10001
Programs
-
Mathematica
f[1] = 1; f[n_?EvenQ] := f[n] = f[n/2]; f[n_?OddQ] := f[n] = f[n-1] + f[n-2]; a[n_] := f[2*n+1]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jul 16 2015 *)
-
PARI
A030068_vec=[1,2,3]; A030068(n)={n>#A030068_vec&&for(n=#A030068_vec,-1+#A030068_vec=concat(A030068_vec,vector(n-#A030068_vec)),A030068_vec[n+1]=A030068_vec[n]+A030067(n));A030068_vec[n]} \\ M. F. Hasler, Mar 24 2017
-
PARI
Vec(prod(k=0,5,1/Ser(x^2^k)+x^2^k)) \\ Correct for n < 2*2^5. - M. F. Hasler, Mar 27 2017
Formula
G.f.: x*(r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) is (1 + 2x + x^2 + x^3 + x^4 + x^5 + ...). - Gary W. Adamson, Sep 02 2016
a(n+1) = a(n) + A060037(n). The above g.f. can be written as x*Product_{k=0,oo} (1/(1-x^2^k)+x^2^k). - M. F. Hasler, Mar 27 2017
Extensions
Offset changed to 1 by N. J. A. Sloane, Mar 27 2017
Comments