cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169836 Perfect squares that are a product of two distinct triangular numbers.

Original entry on oeis.org

0, 36, 900, 1225, 7056, 32400, 41616, 44100, 88209, 108900, 298116, 705600, 1368900, 1413721, 1498176, 2924100, 5336100, 8643600, 8820900, 9217296, 10432900, 15210000, 24147396, 37088100, 48024900, 50893956, 50979600, 52490025, 55353600, 80568576
Offset: 1

Views

Author

R. J. Mathar, May 30 2010

Keywords

Comments

a(47) = 1728896400 is the product of two distinct triangular numbers in two different ways. 1728896400 = A000217(8) * A000217(9800) = A000217(27) * A000217(3024). - Donovan Johnson, Sep 01 2012

Examples

			Examples: 900=3*300. 7056 = 6*1176. 1368900 = 6*228150. 44100 = 36*1225.
		

Crossrefs

Programs

  • PARI
    istriangular(n)=issquare(8*n+1)
    isok(n) = {if (issquare(n), d = divisors(n); fordiv(n, d, if (d > sqrtint(n), break); if ((d != n/d) && istriangular(d) && istriangular(n/d), return (1)););); return (0);} \\ Michel Marcus, Jul 24 2013
    
  • Python
    from itertools import count, islice, takewhile
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A169836_gen(): # generator of terms
        return filter(lambda k:not k or any(map(lambda d: is_square((d<<3)+1) and is_square((k//d<<3)+1), takewhile(lambda d:d**2A169836_list = list(islice(A169836_gen(),20)) # Chai Wah Wu, Mar 13 2023

Formula

a(n) = (A175497(n))^2. [From R. J. Mathar, Jun 03 2010]

Extensions

More terms from R. J. Mathar, Jun 03 2010