A169836 Perfect squares that are a product of two distinct triangular numbers.
0, 36, 900, 1225, 7056, 32400, 41616, 44100, 88209, 108900, 298116, 705600, 1368900, 1413721, 1498176, 2924100, 5336100, 8643600, 8820900, 9217296, 10432900, 15210000, 24147396, 37088100, 48024900, 50893956, 50979600, 52490025, 55353600, 80568576
Offset: 1
Keywords
Examples
Examples: 900=3*300. 7056 = 6*1176. 1368900 = 6*228150. 44100 = 36*1225.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
- Erich Friedman, What's Special About This Number? (See entry 7056.)
Programs
-
PARI
istriangular(n)=issquare(8*n+1) isok(n) = {if (issquare(n), d = divisors(n); fordiv(n, d, if (d > sqrtint(n), break); if ((d != n/d) && istriangular(d) && istriangular(n/d), return (1)););); return (0);} \\ Michel Marcus, Jul 24 2013
-
Python
from itertools import count, islice, takewhile from sympy import divisors from sympy.ntheory.primetest import is_square def A169836_gen(): # generator of terms return filter(lambda k:not k or any(map(lambda d: is_square((d<<3)+1) and is_square((k//d<<3)+1), takewhile(lambda d:d**2
A169836_list = list(islice(A169836_gen(),20)) # Chai Wah Wu, Mar 13 2023
Formula
a(n) = (A175497(n))^2. [From R. J. Mathar, Jun 03 2010]
Extensions
More terms from R. J. Mathar, Jun 03 2010
Comments